All Training Courses
-
Telecoms Fundamentals
Course Code: WR1701 Course Summary This course has been designed for those who do not have a technical background and are new to the telecommunications industry or those who are currently working in the sector. The historical background to telecommunications is described and the technologies, abbreviations and techniques that are employed are explained. During the course, emphasis is placed on learning by group work, discussion and exercises that enhance the understanding of networks and their operation. Use of laptops, tablets and smartphones with Internet access are employed to explore emerging technologies in various areas. Videos and images of equipment and networks are used to explore the many applications of telecommunication in the modern world. Topic Areas Include Defining Telecoms and the Nature of Information A Historical Background to the Telecom Network Digital Fixed Telecom Networks Data Networks Mobile Networks and Wi-Fi Broadband and Emerging Networks
POA: Private Course
-
Telecoms - Today and Tomorrow
Course Code: WR1402 Course Summary This intensive one-day workshop provides delegates with a clear understanding of the technologies available for use within communications networks. It considers how technologies have evolved and then considers fixed-line and mobile voice and data networks. The full range of broadband technologies is introduced both for fixed and mobile access. Who would benefit Those involved in the communications industry who require an understanding of the wide range of technologies used within a converged communications market such as: senior executives; managers; regulators; market analysts; marketeers and new recruits to the industry. Prerequisites This workshop is designed for those with no technical background. Topic Areas Include Basic operation of the Public Switched Telephone Network (PSTN) Comparison of circuit switching and packet switching techniques Principles of an Intelligent Network (IN) Opportunities provided by Value Added Services (VAS) Basic operation of mobile networks and features of an IP data network Quality of Service (QoS) in data networks Fixed broadband access technologies and mobile networks Principles of Next Generation Networks (NGN) Challenges of operating Voice over IP (VoIP) Evolution of fixed and mobile core networks The IP Multimedia Subsystem (IMS) Transmission technologies including PDH and SDH Developments in optical fibre techniques Operation of satellite telecommunication networks The Global Positioning System (GPS) Principles of broadcast radio and TV networks
£980.00
-
Technical Issues in Radio Spectrum Management (LS telcom)
At its heart, radio spectrum management is essentially a technical discipline, overlaid by strategic and economic considerations. One of the main technical goals of spectrum management is to control interference between radio users so as to optimize the use of the spectrum. Controlling interference is not straightforward and requires the balancing of many factors and undertaking this balancing act requires expert skills. This course describes the necessary theoretical, practical and physical qualities of the radio spectrum including the specifics of wave propagation. Following a review of technical fundamentals such as modulation, antennas and propagation modeling, the course considers the characteristics of different parts of the radio spectrum, and examines in detail the different uses to which it is put. The course then discusses why specific uses are often associated with particular radio frequencies and reviews the technical capabilities and limitations of today’s RF technologies. Interference mechanisms and coordination procedures are explored, together with an understanding of how the performance of radio equipment affects interference and coverage. Finally, detailed explanations of the specifics of the most common radio communication services including broadcast, land mobile, fixed and satellite services are given. Course Objectives After completing the course, participants will have a full understanding of the technical and physical issues which impact spectrum management. In addition, they will have deepened their technical knowledge of different radio services and will understand the principles behind controlling interference and the coordination procedures. Intended for This course is intended for those interested in the technical aspects of spectrum management. This includes those working in a technical function at regulators as well as in telecommunications and broadcasting companies and in organizations with a need for strong technical knowledge. Contents Communication principles, modulation techniques and antennas Radio wave propagation, terrain data and propagation calculations Characteristics and use of the radio spectrum from ELF to EHF Detailed exploration of a range of radio communication services: Technical characteristics, service planning Frequency assignment, coordination procedures About LS telcom: LS telcom is a global leader in technologies and consulting services for efficient radio spectrum use, optimizing spectrum management to ensure reliable, interference-free, and secure radio services. Our portfolio includes consulting, measurement services, and integrated solutions for planning, analysis, monitoring, and managing radio infrastructure. Serving customers in over 100 countries, including regulatory authorities, network operators, and industries such as transport, utilities, and security, LS telcom operates globally with subsidiaries and offices in locations like Germany, the UK, Canada, India, and the UAE. Headquartered in Lichtenau, Germany, LS telcom AG has been listed on the German Stock Exchange since 2001 (ISIN DE 0005754402).
£2,600.00
-
TCP/IP
Course Code: QS2501 Course Summary Knowledge of TCP/IP and its operation has become a fundamental requirement for anyone involved in IP networks. This detailed and exciting course takes delegates through TCP/IP principles, applications and protocols, enabling them to work confidently in this changing environment. Who would benefit This course is aimed at engineers who are looking to get started in TCP/IP family of protocols. The course is designed to provide engineers with a foundation into the world of IP and Ethernet in particular, although other major protocols such as MPLS will also be discussed. Prerequisites Some prior knowledge of packet-switched network operations and the Internet is beneficial, but the ability to comprehend technical matters and an interest in Internet protocols is sufficient. Topic Areas Include The Internet TCP/IP features Ethernet Spanning Tree Point-to-Point Protocol (PPP) Multi Protocol Label Switching (MPLS) Internet Protocol (IP) IP version 6 Address Resolution Protocol (ARP) Interior Gateway Protocols (IGP) Internet Control Messaging Protocol (ICMP) User Datagram Protocol (UDP) Transmission Control Protocol (TCP) Dynamic Host Configuration Protocol (DHCP) Domain Name System (DNS) Remote Authentication Dial In User Service (RADIUS)
POA: Private Course
-
Strategy in Business (On-Demand)
Strategic decision-making is a key component of the vast majority of successful businesses, and the impact of those decisions is very likely to have a huge bearing on the success (or otherwise) of the organisation. Despite the intention that company strategy should drive and guide the mix of activities, and both focus and align efforts within appropriately configured units / departments, very few companies give it the time and attention needed to maximise the impact of good decision-making. This programme looks at each component of strategy in turn, with the decision-making process at the heart of a much more extensive set of activities need to maximise the impact of good strategy. We look at the nature of Strategy; building Awareness (industry, market, business dynamics, company-specific); strategic Analysis; strategy Development; strategy Execution; and key Performance Enablers. We draw all the relevant and varied information together, presenting it as a single flow of processes that can be used to drive successful strategy within any business, department or organisation. Who Would Benefit? These programmes deliver comprehensive training for employees at all levels within the organisation. They would benefit employees, mid-senior managers, directors, specialists, consultants and identified talent. Topics Covered: Understanding Strategy, Industry and Business Dynamics Understanding the Nature of Strategy Building Awareness Analysing the Market; Developing Strategy & Competitive Advantage, Strategy Execution, KPIS & OKRs Carrying Out Strategic Analysis Developing the Strategy Strategy Execution Key Performance Enablers
£95.00
-
Strategy in Business
Strategic decision-making is a key component of the vast majority of successful businesses, and the impact of those decisions is very likely to have a huge bearing on the success (or otherwise) of the organisation. Despite the intention that company strategy should drive and guide the mix of activities, and both focus and align efforts within appropriately configured units / departments, very few companies give it the time and attention needed to maximise the impact of good decision-making. This programme looks at each component of strategy in turn, with the decision-making process at the heart of a much more extensive set of activities need to maximise the impact of good strategy. We look at the nature of Strategy; building Awareness (industry, market, business dynamics, company-specific); strategic Analysis; strategy Development; strategy Execution; and key Performance Enablers. We draw all the relevant and varied information together, presenting it as a single flow of processes that can be used to drive successful strategy within any business, department or organisation. Who Would Benefit? These programmes deliver comprehensive training for employees at all levels within the organisation. They would benefit employees, mid-senior managers, directors, specialists, consultants and identified talent. Prerequisites None Topics Covered: Understanding Strategy, Industry and Business Dynamics Understanding the Nature of Strategy Building Awareness Analysing the Market; Developing Strategy & Competitive Advantage, Strategy Execution, KPIS & OKRs Carrying Out Strategic Analysis Developing the Strategy Strategy Execution Key Performance Enablers
POA: Private Course
-
SS7 Engineering
Course Code: QS2500 Course Summary SS7 is a key element in the control plane of fixed and mobile networks and in Intelligent Network scenarios. It facilitates communication between SS7 hosted ‘applications’ enabling end-to-end service delivery. This course provides a comprehensive description of SS7 protocols, functions and procedures. Who would benefit Those who need a detailed understanding of the implementation and functions of SS7. Prerequisites An understanding of the PSTN architecture and circuit- and packet-switched concepts, together with a working knowledge of the OSI Model and primary rate (E1/T1) bearers. Topic Areas Include Overview of signalling and signalling system SS7 architecture: SP, STPs, Links, Link Sets, Routes and Route Sets Point Codes functions and formats Message Transfer Part (MTP) levels 1, 2 and 3 MTP error control, routing and loadsharing principles and user identification The ISDN User Part call control and supplementary services Signalling Connection Control Part (SCCP) functions and services SCCP connectionless and connection-oriented services applications SCCP Global Title routing and segmentation function Transaction Capabilities (TCAP) protocol stack and usage scenarios TCAP Component Sublayer and Transaction Sublayer Component-handling and transaction-handling functions and procedures The Dialogue Portion and application context negotiation SS7 applications in Intelligent Networks and Mobile Networks Introduction to SS7 over IP Includes practical exercises analysing MTP, SCCP, ISUP and TCAP signalling traces.
POA: Private Course
-
Speech Codecs
Course Code: IP1403 Course Summary This course looks at different types of voice coder used in GSM and UMTS networks and then investigates its basic operation looking at CELP and VSELP. The course progresses to look at the functionality of the AMR voice codec and suggest its benefits and looks at Source Controlled Rate (SCR) operation finishes by looking at lost frame substitution. Who would benefit Attendees of this course should require an understanding of the key voice coders used in modern telecommunication networks, as well as their development and operation. This course will be of particular relevance to those interested in the performance of different speech codecs for optimising voice through the network. Prerequisites Delegates should have experience or an interest in mobile networks otherwise there are no prerequisites for this course. Topic Areas Include Voice Coding Linear Predictive Coders (LPCs) The GSM Vocoder Vocoder Action RPE Vocoder Output GSM Coder and Decoder Subjective Division of Codec Parameters Categorization The GSM Half-Rate Speech Coder Code Excited Linear Predictor (CELP) GSM Enhanced Full Rate Speech Coder Adaptive Multi-Rate (AMR) Voice Codec General Description Source Controlled Rate (SCR) Operation Lost Frame Substitution
POA: Private Course
-
Spectrum Monitoring - Measurements and Techniques (LS telcom)
This course is based on the latest ITU-R and CEPT recommendations, reports and handbooks and provides an introduction into the most common spectrum monitoring and measurements techniques. It is also presented theoretical background and practical examples that help in understanding specifics of administrative radio monitoring. The training concludes with number of practical examples. Course Objectives After the training, the participants will be able to understand standards, the procedures and methods of the most common monitoring measurements, to distinguish between different measurements technologies, to respect technical limitations of measurement equipment, to present results to different user groups on a simple way. Intended for This course is intended for those who have a basic knowledge of radio communications and electromagnetic wave propagation, who are interested in spectrum monitoring measurement and techniques and who may be employed in regulatory authorities that supposed to execute spectrum monitoring measurements, reporting and providing early warnings to policy makers. Contents General expectations of spectrum monitoring Utilization of radio monitoring results Manual monitoring (ITU/ECC references, proposed procedure) Channel & band occupancy (ITU R1, ERO/ECC) Monitoring of broadcast and digitally modulated signals Interference description, detection, reporting Analysis of results and reporting Automated monitoring Detection of regulatory unauthorized utilizations Inspection/certification/technical acceptance Real time radio occupancy monitoring (for utilizing of whitespace) General license compatibility monitoring (like SRD/ISM/WiFi) Monitoring of assignments (like cellular access systems or MMDS) Areal monitoring (geolocation of low power sources) Interpretation of results and publishing (what, why and when to publish) About LS telcom: LS telcom is a global leader in technologies and consulting services for efficient radio spectrum use, optimizing spectrum management to ensure reliable, interference-free, and secure radio services. Our portfolio includes consulting, measurement services, and integrated solutions for planning, analysis, monitoring, and managing radio infrastructure. Serving customers in over 100 countries, including regulatory authorities, network operators, and industries such as transport, utilities, and security, LS telcom operates globally with subsidiaries and offices in locations like Germany, the UK, Canada, India, and the UAE. Headquartered in Lichtenau, Germany, LS telcom AG has been listed on the German Stock Exchange since 2001 (ISIN DE 0005754402).
£1,300.00
-
Spectrum Matters for 5G/6G (LS telcom)
5G is driven both by the need for mobile operators to continuously strive to satisfy the growing and unquestionable demand for mobile data, and to support new use cases and services. Regulators and governments have been involved in establishing policies and approaches to award spectrum, so that new 5G services can be rolled out to consumers, enterprises, public sector and government agencies alike. Questions remain about how much more spectrum is needed for 5G but also for what spectrum is needed for 6G which is due for commercialization in the early 2030’s. When it comes to the question of spectrum however, there are many different views about how growth in data traffic impacts upon demand for radio spectrum. It is also evident that below 6 GHz there is very little spectrum remaining that can be re-farmed for mobile services and much of the focus for new spectrum for future mobile (6G) services is concentrated above 6 GHz. How feasible is it to deliver mobile services at such high frequencies? Are there ways to use existing spectrum more efficiently, or are technologies such as LTE and 5G Advanced already very close to the limit of what is achievable? Course Objectives After completing the course, participants will have an understanding of how the evolution towards new standard cellular technologies 5G and 6G has meant identifying new spectrum, or at least one new band. Participants will also understand the practical utilization of ever increasing frequencies in a mobile environment, and whether 6G might mark the end to the hunger of mobile operators for more spectrum. Intended for Those who need to better understand the spectrum implications of 5G and 6G technologies, whether from a regulatory, commercial or technical perspective. Contents Forecasts of demand for data services Realistically forecasting spectrum demand Bands capabilities and issues with existing IMT bands New bands being considered for 5G and 6G services Propagation and coverage of bands above 6 GHz The spectrum efficiency of existing IMT technologies The 5G ecosystem A roadmap for the evolution of 5G services towards 6G Authorization of mobile spectrum About LS telcom: LS telcom is a global leader in technologies and consulting services for efficient radio spectrum use, optimizing spectrum management to ensure reliable, interference-free, and secure radio services. Our portfolio includes consulting, measurement services, and integrated solutions for planning, analysis, monitoring, and managing radio infrastructure. Serving customers in over 100 countries, including regulatory authorities, network operators, and industries such as transport, utilities, and security, LS telcom operates globally with subsidiaries and offices in locations like Germany, the UK, Canada, India, and the UAE. Headquartered in Lichtenau, Germany, LS telcom AG has been listed on the German Stock Exchange since 2001 (ISIN DE 0005754402).
£1,300.00
-
Software Defined Networking (SDN) Training Course
Course Code: IP1502 Course Summary This is a concise course addressing Software Defined Networking (SDN). It begins with a discussion of the drivers towards and the main objectives of SDN, before examining the architecture engineered to support SDN, including a discussion of Network Function Virtualisation (NFV). The deployment of software defined networks is discussed in detail, with significant consideration of switching techniques and SDN in wireless networks, as is the southbound operation of SDN with a focus on OpenFlow. The course also includes information on SDN in transport networks and a key case study looking at Google’s G Scale Network. Who would benefit This course is suitable for those who need a solid base understand of SDN, network virtualisation and the deployment considerations associated with SDN, including network, software and IT engineers, as well as managers and consultants. Prerequisites Delegates should have experience or an understanding of the principles or IP networking and routing. Topic Areas Include SDN Drivers for Change Evolution and Virtualization X as a Service in Layers SDN Goals Introducing SDN Architecture SDN Split Architecture SDN Traffic Engineering Network Functions Virtualization (NFV) and SDN SDN Deployment SDN Architecture SDN Summary SDN Vision Case Study – Google OpenFlow OpenFlow Examples Netconf and YANG SDN to Control Transport Networks Case Study – Mininet
POA: Private Course
-
Software Defined Networking (SDN) (On-Demand)
This is a concise course addressing Software Defined Networking (SDN). It begins with a discussion of the drivers towards and the main objectives of SDN, before examining the architecture engineered to support SDN, including a discussion of Network Function Virtualisation (NFV). The deployment of software defined networks is discussed in detail, with significant consideration of switching techniques and SDN in wireless networks, as is the southbound operation of SDN with a focus on OpenFlow. The course also includes information on SDN in transport networks and a key case study looking at Google’s G Scale Network. Who would benefit This course is suitable for those who need a solid base understand of SDN, network virtualisation and the deployment considerations associated with SDN, including network, software and IT engineers, as well as managers and consultants. Prerequisites Delegates should have experience or an understanding of the principles or IP networking and routing. Topic Areas Include SDN Drivers for Change Evolution and Virtualization X as a Service in Layers SDN Goals Introducing SDN Architecture SDN Split Architecture SDN Traffic Engineering Network Functions Virtualization (NFV) and SDN SDN Deployment SDN Architecture SDN Summary SDN Vision Case Study – Google OpenFlow OpenFlow Examples Netconf and YANG SDN to Control Transport Networks Case Study – Mininet
£500.00
-
Softswitching and VoIP
Course Code: IP2001 Course Summary Covering Voice over IP (VoIP) services in fixed and mobile, Next Generation Networks (NGNs) and all IP-based networks, the course also includes VoIP concepts, supporting architectures, interworking with circuit-switched networks together with QoS issues. Who would benefit Those requiring an overview of how voice may be integrated into IP networks. Prerequisites Familiarity with IP and intranet operation is beneficial. This can be obtained from attendance on the TCP/IP (QS2501) course. Topic Areas Include Supporting VoIP in fixed and mobile NGNs Protocols for VoIP Voice quality, quality measurements and quality reports Session Initiation Protocol (SIP) Session Description Protocol (SDP) SIP Peer-to-Peer operation SIP architecture User Agent clients and servers Registrar, Proxy and Redirect Servers Back-to-Back User Agents SIP Requests, Responses and Header analysis Demonstrations with analysis of Registration/Authentication and VoIP session-handling procedures ENUM, NAT, STUN and TURN H.248/Megaco Includes practical demonstrations.
POA: Private Course
-
SMS Messaging
This course develops a rounded understanding of SMS technology, its operations, and the challenges it presents. After exploring the SMS ecosystem, from mobile network infrastructure to message routing, we delve into the fundamental principles of SMS operation, and the various protocols and standards that govern it. We include the different types of SMS service and overall operation - from message origination to final receipt. We then delve into the challenges and vulnerabilities associated with SMS messaging – building an understanding of the common issues, such as spam, fraud, and security threats. We discover effective strategies to mitigate these risks and protect the integrity of SMS communication. By the end of this course, you will have a solid foundation of SMS messaging. Who Would Benefit The course is intended for engineers and other staff who are involved with SMS messaging or systems that use messaging to deliver services – or those who need to understand messaging in order to help combat fraud Prerequisites An telecoms background with some general knowledge of cellular networks and services would be an advantage Course Contents Foundation for SMS SMS Operation SMS – Issues, Fraud, and Mitigation
POA: Private Course
-
Small Cells Engineering Overview
Course Code: LT1311 Course Summary This course provides a detailed overview of the technologies and techniques employed by Small Cell deployments. It describes the drivers for small cells in a heterogeneous network and identifies the various interfaces, protocols, security functions and network architectures. The features of Self Organising Networks (SON) are described and small cell backhaul techniques are explored. The course concludes with an overview of the future evolution of small cell technologies. Who would benefit This course is suitable for engineering and technical management staff who require a technical overview of the protocols, architectures, standards and configuration considerations related to small cell technologies. Prerequisites Attendance on this course assumes basic cellular telecoms experience but this is not a necessity. Topic Areas Include Mobile Network Generations and Evolution Small Cells Definition The Small Cells Forum Small Cell Applications Associated Technologies and Developments Small Cell Network Architectures Heterogeneous Networks 3G HNB, 4G HeNB Architecture Closed Subscriber Groups Small Cell network architecture, components and interfaces Small cells in the enterprise SON (Self Organizing Networks) Small Cell SON Functions Automatic small cell initialization and configuration Small Cell Backhaul Requirements Wireline and Wireless Backhaul Solutions Broadband-based Backhaul Carrier Ethernet Security, Synchronization, QoS and Reliability Techniques Technology Roadmap for Small Cells LTE-Advanced Small Cells Interworking with Wi-Fi Future developments
POA: Private Course
-
SIP Trunking
Course Code: MB1305 Course Summary This half-day course uses real business cases throughout to discuss the lead up to the employment of SIP Trunking. It includes an overview of carrier scenarios in consideration of all IP infrastructures; a brief look at the standards and a detailed discussion of design considerations, including authentication; transcoding; session management; SIP interworking; pitfalls and security considerations. Who would benefit This course is for engineers who wish to understand the market forces behind the growing use of SIP Trunking, explained through real-life examples. Attendees should also have an interest in the standard governing SIP Trunking – SIP Connect, as well as the design options available from a carrier/telco’s perspective. Prerequisites Although there are no specific prerequisites for this course, delegates should have a basic understanding of SIP and a keen interest in understanding the drivers behind SIP Trunking. Topic Areas Include Why SIP trunking? Customer scenarios Carrier scenarios Technical Standards Design options
POA: Private Course
-
Single RAN
Course Code: LT1203 Course Summary The advent of technologies such as SDR (Software Defined Radio) and packet-based backhaul have enabled vendors and operators to develop ‘Single RAN’ concepts in which MSR (Multi-Standard Radio) base stations are capable of managing 2G, 3G and even 4G cells from within a single base station unit. Shared IP-based backhaul via an Ethernet packet network further allows for the traditional multi-RAN concept to be abandoned as Single RAN architectures begin to be deployed. This course provides a detailed overview of the Single RAN concept, of the technologies and techniques that enable it and of the architectures and deployment options that have made it a reality. Who would benefit This course is designed for engineers, managers and other personnel who have a need to acquire a technical overview of the Single RAN concept and of the technologies and techniques that enable it. Prerequisites An understanding of 2G, 3G and/or 4G access network architectures and technologies would be an advantage as would a basic knowledge of IP. Topic Areas Include Defining the single RAN Potential benefits and dangers of single RAN implementation MSR base stations Software defined radio Multi-standard band sharing OBSAI and CPRI Localized versus distributed cell sites MSR base Station sharing Potential RF issues Single RAN architecture Backhaul networks and architectures for single RAN Multi-RAT operation Flexible core network connectivity Network area coordination RSFP index and idle mode mobility Connected mode mobility IP flow mobility Multi RAN architecture Single RAN architecture Single RAN implementation example
POA: Private Course
-
SIGTRAN
Course Code: QS2600 Course Summary The drive towards all-IP networking necessitates the transport of SS7 protocols over an IP domain. This course provides a thorough explanation of how this is achieved using the SIGTRAN ‘toolkit’. Who would benefit Those requiring an understanding of the need for SS7 and the solutions available for transporting SS7 signalling over IP-based networks. Prerequisites Familiarity with the PSTN architecture and SS7 signalling protocols, particularly MTP and SCCP, together with some knowledge of the TCP/IP protocol suite. Topic Areas Include Why SIGTRAN? Potential SS7 and IP interworking scenarios SIGTRAN protocols SIGTRAN in circuit-related and non-circuit-related signalling scenarios Stream Control Transmission Protocol (SCTP) SCTP architecture, operation, procedures and terminology MTP2 Peer-to-Peer Adaptation (M2PA) layer MTP3 User Adaptation (M3UA) layer MTP2 User Adaptation (M2UA) layer SCCP User Adaptation (SUA) layer Adaptation layer architecture, operations, procedures and resilience models Analysis of SIGTRAN operation using Wireshark
POA: Private Course
-
Sharing and Dynamic Spectrum Access – Hidden Spectrum Resources (LS telcom)
The planning rules for radio services often leave small gaps which cannot be used or the scattered use of spectrum by a primary user leaves larger opportunities. Such spectrum might be accessible for different or additional radio services, typically ones with very low power which will not cause undue interference to the primary users. These opportunities were referred to as ‘whitespaces’ but the focus more recently considers methods such as dynamic spectrum assignment. In addition, regulatory techniques are trying to find ways to make sharing spectrum a more common practice for use across a myriad of spectrum services. This course examines the background to whitespaces, considering how and where they arise and looks at a range of sharing opportunities. It then focuses on how spectrum might be made available to additional parties, and what kind of communications it might support. Finally, the various regulatory methods and technologies (including DSA/LSA and the role of databases) being considered will be examined. Course Objectives After completing the course, delegates will understand the history of whitespaces, and the more recent opportunities for sharing together with methods to regulate usage. Current developments and case studies will also be provided. Intended for those who need to understand the regulation and practical application of advanced sharing techniques, whether from a regulatory or commercial perspective. Contents The possible applications for more advanced spectrum sharing methods Technologies being developed for the exploitation spectrum sharing Where are there opportunities for more advanced sharing? How is interference dealt with The regulatory processes and procedures being applied Geographic databases and dynamic spectrum access Licensed shared access and similar regulatory tools About LS telcom: LS telcom is a global leader in technologies and consulting services for efficient radio spectrum use, optimizing spectrum management to ensure reliable, interference-free, and secure radio services. Our portfolio includes consulting, measurement services, and integrated solutions for planning, analysis, monitoring, and managing radio infrastructure. Serving customers in over 100 countries, including regulatory authorities, network operators, and industries such as transport, utilities, and security, LS telcom operates globally with subsidiaries and offices in locations like Germany, the UK, Canada, India, and the UAE. Headquartered in Lichtenau, Germany, LS telcom AG has been listed on the German Stock Exchange since 2001 (ISIN DE 0005754402).
£1,300.00
-
Session Initiation Protocol (SIP)
Course Code: MB1401 Course Summary This course provides an understanding of the Session Initiation Protocol (SIP), Session Description Protocol (SDP) and the Real-time Transport Protocol (RTP) and their roles in establishing multimedia communications over an IP-based network. It also provides a detailed understanding of SIP architectures and identifies the roles and functions of a variety of SIP server types. Who would benefit Those requiring a detailed understanding of the operation of the SIP and related protocols. Prerequisites A basic understanding of IP, UDP and TCP is an advantage. Topic Areas Include The role of SIP, SDP and RTP in multimedia communications Locating users in a SIP environment SIP requests and responses SIP user agents, dialogues and transactions SIP architecture, operation and procedures SIP URIs and Tel URIs Analysis of SIP registration and session control Analysis of SIP and SDP messages and header fields Request and response routing techniques Route and record route headers The roles and functions of SIP Servers: Proxy, Redirect, B2BUA and Forking SDP offer/answer model SIP-I and interworking with the PSTN Registration and session establishment Case studies using Wireshark analysis
POA: Private Course
-
Routing Protocol Principles
Course Code: IP1306 Course Summary An IP course that looks at providing a grounding in two principle routing protocols namely Open Shortest Path First (OSPF) and Border Gateway Protocol (BGP). Who would benefit All network engineers who are in need of information concerning the configuration and operation of link state protocols such as OSPF and the Path Vector Algorithm demonstrated by BGP. This is an essential prerequisite for anyone considering taking on Multiprotocol Label Switching (MPLS). Prerequisites It is essential that engineers have a grounding in IP and networking which is best obtained by attending our Wray Castle course ‘Internetworking, Ethernet LANs and VLANs Principles – IP1304’ and ‘IP Addressing and Internet Protocols Principles – IP1305’. Topic Areas Include The purpose of routing The route table Routing traffic Interior and exterior gateway protocols Routing Information Protocol (RIP) v1 OSPF concepts OSPF configuration Interior (IGP) versus Exterior (EGP) routing Border Gateway Protocol Version 4 (BGP4) MPLS VPN operation
POA: Private Course
-
Radio System Design
Course Code: RP1101 Course Summary The course covers the essential information and practical skills needed to begin designing mobile and fixed radio systems. Who would benefit Those involved in the specification, design, planning, management and maintenance of mobile and fixed radio systems. Prerequisites A good knowledge of radio principles, a background in telecommunications engineering, or attendance on the Radio Principles course (RP1301). Topic Areas Include Spectrum regulation – ITU, CEPT, ECC, Ofcom Calculating gain, loss and power levels – the decibel Calculating noise levels in radio systems Interpreting antenna and feeder specifications Radio propagation mechanisms Radio propagation modelling Production of radio path profiles Calculating power budgets Calculating fade margins Diversity systems Planning coverage and capacity for mobile systems Radio site engineering Design a mobile radio system Design a fixed radio link Includes practical exercises throughout, including a system design exercise.
POA: Private Course
-
Radio Spectrum
Course Code: RP1202 Course Contents What is Spectrum? Socio-Economic benefits of Spectrum What is Spectrum Management? Introduction to ITU-R Technical Characteristics of Radio Propagation Mobile Communication Technologies What is Driving the Demand for Spectrum? Other Spectrum Users How Other Administrations are Tackling the ‘Capacity Crunch’ Determining Spectral Requirements for IMT
POA: Private Course
-
Radio Networks for Critical Communications (LS telcom)
Professional users in public safety, PPDR, transportation, utilities and industry must rely on efficient radio systems to provide wireless communication for support of their daily operation. Implemented radio technology, network design and user requirements must be carefully matched against each other. A solid understanding of users’ requirements and the possibilities and limitations of technologies is therefore essential. This course discusses issues which need to be considered when a radio system for critical communications shall be introduced or existing systems shall be replaced: Is it better to use services from an existing operator or to build and operate a dedicated network? Which deployment concept should be selected? How to define coverage and capacity? Which technology can provide the required services? These and other questions related to the design and introduction of RF networks for critical communications will be discussed. Starting with specific requirements, the course introduces services specific to critical communications, explains typical planning approaches and highlights possible implementation scenarios. A comparison of recent and upcoming radio technologies like TETRA, DMR, LTE as well as 5G for broadband applications completes the training. Course Objectives After completing the course, delegates will understand users’ requirements and limitations of current radio technologies like TETRA, DMR, LTE, 5G etc. They will know the technical and economic constraints of radio systems for critical communications and will be able to realistically assess the promises of system vendors and service providers. Intended for This course is intended for those who have basic knowledge in radio communication systems, who are interested in technical aspects for critical communications networks and who may be employed in telecoms regulators, organizations for public security and utility and transportation companies. Contents Introduction to radio networks for critical communications Requirements on communication services and applications Mobile broadband for PPDR Elements of a radio network for critical communications Planning and operation of a radio network Radio systems for critical communications (DMR, TETRA, LTE, 5G) About LS telcom: LS telcom is a global leader in technologies and consulting services for efficient radio spectrum use, optimizing spectrum management to ensure reliable, interference-free, and secure radio services. Our portfolio includes consulting, measurement services, and integrated solutions for planning, analysis, monitoring, and managing radio infrastructure. Serving customers in over 100 countries, including regulatory authorities, network operators, and industries such as transport, utilities, and security, LS telcom operates globally with subsidiaries and offices in locations like Germany, the UK, Canada, India, and the UAE. Headquartered in Lichtenau, Germany, LS telcom AG has been listed on the German Stock Exchange since 2001 (ISIN DE 0005754402).
£1,300.00
-
Radio Network Surveys (On-Demand)
Course Code: MB1801 Course Summary To carry out meaningful radio surveys of GSM, UMTS, LTE and Wi-Fi networks demands a knowledge of how those networks operate and the key radio metrics. These are discussed in detail along with the types of surveys and information they can reveal. The course is focused on the practical issues of performing surveys backed up with demonstrations. The equipment and software used on this course includes the Rohde & Schwarz TSMA radio scanner, ROMES and NESTOR software as well as the QualiPoc, handheld survey tool. Who would benefit Those that need to create a ‘picture’ of the cellular radio network environment to aid coverage optimization, crime scene investigation, alibi verification, intelligence gathering and performance analysis. This course features the Rohde & Schwarz TSMA radio scanner in conjunction with the ROMES and NESTOR software as well as a drive test tool. Prerequisites Previous attendance on GSM, UMTS, LTE and Wi-Fi courses would be advantageous but not essential. Topic Areas Include: Cellular radio principles Cellular radio spectrum and identities Wi-Fi radio spectrum and identities Radio measurements and metrics Cell selection and reselections for GSM, UMTS and LTE Location reporting in idle mode Mobility in Wi-Fi Connected mode activity for mobile devices Tools for radio surveys Spectrum occupancy Coverage surveys Base station position estimation Practical guidance for surveying
£1,815.00
-
Radio Network Surveys
Course Code: MB1801 Course Summary To carry out meaningful radio surveys of GSM, UMTS, LTE and Wi-Fi networks demands a knowledge of how those networks operate and the key radio metrics. These are discussed in detail along with the types of surveys and information they can reveal. The course is focused on the practical issues of performing surveys backed up with demonstrations. The equipment and software used on this course includes the Rohde & Schwarz TSMA radio scanner, ROMES and NESTOR software as well as the QualiPoc, handheld survey tool. Who would benefit Those that need to create a ‘picture’ of the cellular radio network environment to aid coverage optimization, crime scene investigation, alibi verification, intelligence gathering and performance analysis. This course features the Rohde & Schwarz TSMA radio scanner in conjunction with the ROMES and NESTOR software as well as a drive test tool. Prerequisites Previous attendance on GSM, UMTS, LTE and Wi-Fi courses would be advantageous but not essential. Topic Areas Include Cellular radio principles Cellular radio spectrum and identities Wi-Fi radio spectrum and identities Radio measurements and metrics Cell selection and reselections for GSM, UMTS and LTE Location reporting in idle mode Mobility in Wi-Fi Connected mode activity for mobile devices Tools for radio surveys Spectrum occupancy Coverage surveys Base station position estimation Practical guidance for surveying
POA: Private Course
-
Radio Network Planning for Critical Communications Networks (LS telcom)
Radio networks for professional use in public safety, transportation, utilities, and industry must provide reliable communication for mission critical applications. The use of appropriate design parameter and planning procedures is crucial to achieve the required network performance. This course provides a solid understanding of how to design and plan networks for critical communications using digital radio technologies like TETRA, DMR or LTE/5G. The course follows the typical steps of radio network planning from definition of coverage thresholds, over first network design and coverage planning to the development and analysis of frequency plans. Practical considerations and tasks including site selection and antenna configurations are discussed by means of photos and documents originating from real-life networks. Live calculations with a planning tool are used to illustrate effects of site selection and site and network configuration. Supporting the practical exercises, theoretical elements of the course include the principles of radio propagation, link budgets, the determination of coverage thresholds and capacity considerations. The course will be presented as classroom training with slides, interactive tool calculations and exercises to be done by the participants. Course Objectives After completing the course, delegates will be familiar with the typical procedures for RF network planning for radio technologies like TETRA, DMR and LTE/5G. They know how to define planning criteria for RF networks and understand the underlying technical and theoretical approaches. Intended for This course is intended for those who have basic knowledge in radio network planning, who are interested in radio network planning for critical communications networks and who may be employed in telecoms regulators, telecoms operators, and utility and transportation companies. Contents Targets and procedures for radio network planning System parameter and architecture of critical communication networks Definition of coverage and capacity targets Antenna configurations, site selection and coverage planning Capacity considerations Frequency planning About LS telcom: LS telcom is a global leader in technologies and consulting services for efficient radio spectrum use, optimizing spectrum management to ensure reliable, interference-free, and secure radio services. Our portfolio includes consulting, measurement services, and integrated solutions for planning, analysis, monitoring, and managing radio infrastructure. Serving customers in over 100 countries, including regulatory authorities, network operators, and industries such as transport, utilities, and security, LS telcom operates globally with subsidiaries and offices in locations like Germany, the UK, Canada, India, and the UAE. Headquartered in Lichtenau, Germany, LS telcom AG has been listed on the German Stock Exchange since 2001 (ISIN DE 0005754402).
£1,605.00
-
Radio Link Calculation and Coordination Tool – CHIRplus_TC (LS telcom)
The design of microwave links requires complex calculations to dimension link capacity and availability or to assign frequencies. The planning tool CHIRplus_TC provides the required functionality in a user-friendly way and is essential for proper link design. The seminar introduces essential features to perform link engineering and planning tasks for Point-to-Point and Point-to-Multipoint systems. The first day is dedicated to the general tool handling. The different database functions and configurations are presented and discussed with the delegates. The following days will cover the necessary steps to perform typical link calculations - from data input over the setting of required parameters to the calculations analyses. Finally, reports and data export options will be presented. The entire workflow that is required to execute microwave radio link planning tasks as well as the Point-to-Multipoint network planning process is covered. Additionally, an overview of further network technologies included in the Net Module will be introduced. Course Objectives After the training the delegates will be able to efficiently solve link planning and coordination tasks using CHIRplus_TC and to interpret the calculation results for microwave links and Point-to-Multipoint networks. Intended for This course is intended for those who have basic knowledge in radio communication and microwave link design and who are interested in the functionality provided by CHIRplus_TC. Contents Setup and configuration of CHIRplus_TC Interaction with the Graphical User Interface (GUI) Usage of databases and spreadsheets (especially filtering) Point-to-Point microwave link design Path profile and link budget Reliability/availability analyses Frequency planning and network optimization Interference calculation and complete network analyses Point-to-Multipoint network planning Net Module: Overview of network technologies Data import and export, reports and documentation About LS telcom: LS telcom is a global leader in technologies and consulting services for efficient radio spectrum use, optimizing spectrum management to ensure reliable, interference-free, and secure radio services. Our portfolio includes consulting, measurement services, and integrated solutions for planning, analysis, monitoring, and managing radio infrastructure. Serving customers in over 100 countries, including regulatory authorities, network operators, and industries such as transport, utilities, and security, LS telcom operates globally with subsidiaries and offices in locations like Germany, the UK, Canada, India, and the UAE. Headquartered in Lichtenau, Germany, LS telcom AG has been listed on the German Stock Exchange since 2001 (ISIN DE 0005754402).
£1,865.00
-
Quality of Service Principles
Course Code: IP1308 Course Summary This fast paced 1-day course looks at all aspects of QoS affecting converged telecommunications networks today. In particular it looks at QoS in ATM, MPLS, Ethernet and IP networks as well as looking at mechanisms used in VoIP and IPTV. Who would benefit All engineers involved in planning, designing, implementing, supporting and managing services over modern IP networks and need to understand the QoS mechanisms at their disposal. Prerequisites A good understanding of IP networks which can be obtained by attending our Wray Castle courses ‘Routing Protocol Principles – IP1306’ and our ‘Multi Protocol Label Switching – IP1307’. Topic Areas Include What is QoS? Traffic Management IntServ and DiffServ Operation Queue Management Speech Quality Video/Audio Quality IP over ATM QoS QoS in MPLS Networks Ethernet Switch QoS Fundamentals Backhaul Traffic Profile
POA: Private Course
-
Quality of Service (QoS)
Course Code: IP1309 Course Summary Telecommunication networks have evolved to offer a rich mix of multimedia and voice services. Many such services depend on the Internet Protocol (IP) for their operation and networks need to be equipped and engineered to cope with changed and changing requirements. The Quality of Service (QoS) offered to users is a vital aspect of IP network engineering and is pertinent to all IP network types. This detailed Wray Castle course provides network engineers with an in-depth study that covers all the principal aspects of IP QoS in part through theory but also by means of at least 9 practical exercises. The practical exercises will take the delegates through queue management techniques associated with switches and then routers. These exercises will include looking at QoS markings and then look at priority queueing, custom queueing, fair and weighted queueing as well as class-based routing. Exercises also cover RSVP and traffic shaping. In order to aid the exercises a set of pods will be used where each pod consists of 3 routers and 2 switches all the ancillary cables and a laptop will be provided although it is recommended that delegates bring their own laptop to aid with testing and so that they can take example traces away with them for further study after the course. Who would benefit This course has been designed for those needing an understanding of the QoS engineering approaches available in IP networks. It will benefit engineers involved in network planning, commissioning, network optimization, strategy determination, deployment, equipment design or manufacturing of network equipment. Some will find that this course will satisfy their complete requirements, while for others it will provide one element in a wider study based on primary material and other related Wray Castle courses. This course is also very useful for engineers and scientists working in areas related to IP network operation. This includes those working within service delivery, service developers, billing, Government security or forensic work, technical support staff and those in technical management roles. Prerequisites A thorough foundation in the practices of IP routing would be highly beneficial before attending this course. Topic Areas Include QoS Principles Packet Filtering for QoS QoS approaches in IP Networks IntServ DiffServ Queue Management Router QoS Markings Priority Queueing Custom Queueing Fair Queueing Weighted Fair Queueing Class-based Routing Traffic Shaping
POA: Private Course
-
Procurement for Telecoms
Procurement plays a vital role in the telecommunications industry, ensuring the efficient and cost-effective acquisition of goods and services necessary for operations. With the rapid pace of technological advancements and evolving customer demands, telecom companies rely on procurement professionals to source and negotiate contracts for network infrastructure, equipment, software, and services. Effective procurement strategies can help telecom companies optimize their supply chains, control costs, and ensure efficient delivery of products and services. Furthermore, the procurement function involves managing vendor relationships, conducting market research, and staying updated on industry trends to drive innovation and maintain a competitive edge in this dynamic sector. The one-day Procurement for Telecoms course will enable you to build a better understanding of the key concepts and strategies in procurement and apply these concepts to your own organization. Prerequisites A basic understanding of business concepts and operations within the telecoms industry would be helpful, as would some familiarity with emerging Industry trends. Who would benefit? This training course would benefit telecoms executives or managers who work in, or have an interest in, the procurement process within telecoms and related organisations. Course Modules: Concepts of Procurement in Telecoms Supplier Strategy Identifying Potential Category Specific Procurement Levers Implementing a strategy CSR and Carbon Neutral for Procurement in Telecoms Course Director: Tim Williams Tim is a seasoned professional with extensive experience in procurement and supply chain management, his expertise spans strategic procurement advisory, procurement transformation, stakeholder management, and driving improvements in procurement functions. Tim is a Fellow of the Chartered Institute of Purchasing and Supply and has held significant leadership roles including: Senior Advisor to a Major Strategic Global Consultancy Chief Procurement Officer MTN Group (Location Dubai) Director of SCM Transformation and Services Procurement, Vodafone Procurement Company Head of Supply Chain Transformation Vodafone Group
POA: Private Course
-
Principles of Radio Site Engineering
Course Code: RP2100 This course is intended for those involved in radio site acquisition, planning and build, who do not have a strong radio background. The training covers radio theory applicable to the cellular industry and focuses on the practical issues of site build. Who would benefit Those requiring an overview of what is involved in the siting of telecoms transceiver equipment in radio sites. Prerequisites No prior knowledge of radio principles is required. A technical background or the ability to comprehend technical information is advantageous. Topic Areas Include Radio theory Radio wave propagation Antenna theory Considerations for siting antennas Transmission lines Considerations for installing transmission lines Cell dimensioning Cell site selection and positioning Indoor coverage challenges Indoor coverage using repeaters Indoor coverage using base stations Antenna systems for indoor coverage Radio systems interference Multi-site configurationsEarthing UK planning issues Trainer: Les Granfield Les is a technical trainer with 35 years of experience. His expertise extends across a wide range of telecommunications technologies. He specializes in GSM, GSM-R, ERTMS/ETCS, UMTS, LTE and 5G radio access networks, radio planning, radio access network optimization and Push to Talk over Cellular (PoC).
POA: Private Course
-
Practical Spectrum Monitoring Measurements (LS telcom)
This course gives an introduction to practical spectrum monitoring measurements. Delegates will follow practical examples to illustrate the limitations of spectrum monitoring measurements. During hands-on measurements of the RF environment around our Training Academy in Lichtenau/Germany the delegates will put the learned techniques into practice. Course Objectives After completing the training delegates will be able to perform practical spectrum monitoring measurements under real-life conditions and understand the limitations in the RF field. They will also be able to make estimations of expected measurement results, judging the quality of the measurements performed and planning measurementcampaigns. Intended for Regulatory authorities’ staff members supposed to execute spectrum monitoring measurements. Contents Overview of spectrum monitoring tasks Selecting equipment according to the actual task Distinguishing between real signals and intermodulation products Limitations due to the real-life environment Basic measurements Practical measurement on FM broadcast-/DVB-T-transmitters Basic signal analysis Automatic Violation detection Different usage of homing and direction finding Locating transmitters using different methods (AoA/GRoA+/TDOA) Hints and kinks performing measurements Quality of measurement results Planning measurement campaigns Practical hands-on measurements in the field About LS telcom: LS telcom is a global leader in technologies and consulting services for efficient radio spectrum use, optimizing spectrum management to ensure reliable, interference-free, and secure radio services. Our portfolio includes consulting, measurement services, and integrated solutions for planning, analysis, monitoring, and managing radio infrastructure. Serving customers in over 100 countries, including regulatory authorities, network operators, and industries such as transport, utilities, and security, LS telcom operates globally with subsidiaries and offices in locations like Germany, the UK, Canada, India, and the UAE. Headquartered in Lichtenau, Germany, LS telcom AG has been listed on the German Stock Exchange since 2001 (ISIN DE 0005754402).
£2,220.00
-
Planning and Coordination of Microwave Links (PtP/PtMP) (LS telcom)
Modern transmission networks require communication links with high link capacity and availability. Microwave Point-to-Point (PtP) and Point-to-Multipoint (PtMP) systems can provide the required performance if the links are designed appropriate. Theoretical know-how combined with best practice for link engineering and design ensures that the possibilities of modern link technology will be fully available after implementation. The course introduces both theoretical and practical knowledge in planning of microwave links. Topics touched cover wave propagation, link budget and availability calculations as well as technical parameters of antennas and microwave devices. Best practice for the analysis of path profiles including line of sight aspects, selection of antenna, modulations scheme and frequency band is provided. Availability engineering of links is discussed as well as frequency and capacity planning for complex transmission networks. This includes the effective use of frequency raster and the analysis of network interference to achieve low interference and high frequency reuse. Course Objectives After completing the course, delegates will be familiar with the principles of microwave radio link planning and will be in the position to design individual microwave links as well as complete PtP and PtMP networks. Intended for This course is intended for those who have basic knowledge in radio communications and microwave link technology, who are interested in microwave link planning and who may be employed in regulators, telecoms operators and utility or transportation companies. Contents Spectrum regulation and licensing aspects Relevant ITU recommendations Wave propagation and effects ITU propagation models Path profile analysis Microwave devices and antennas Availability and error performance Link budget calculation Frequency planning and channel assignment Interference analysis and network optimization About LS telcom: LS telcom is a global leader in technologies and consulting services for efficient radio spectrum use, optimizing spectrum management to ensure reliable, interference-free, and secure radio services. Our portfolio includes consulting, measurement services, and integrated solutions for planning, analysis, monitoring, and managing radio infrastructure. Serving customers in over 100 countries, including regulatory authorities, network operators, and industries such as transport, utilities, and security, LS telcom operates globally with subsidiaries and offices in locations like Germany, the UK, Canada, India, and the UAE. Headquartered in Lichtenau, Germany, LS telcom AG has been listed on the German Stock Exchange since 2001 (ISIN DE 0005754402).
£1,300.00
-
Packet Engineering for Cellular Mobile Networks
Course Code: MB1201 Course Summary This course provides an overview of the GPRS system beginning with an overall description of GPRS and progressing through its network architecture and operational aspects. The subsequent sections cover EDGE, the structure of the GPRS air interface and the basics of uplink and downlink packet transfer. Who would benefit Those already working in the GSM industry who require an overview of GPRS operation including its association with EDGE and how it interworks with 2.5G and 3G 3GPP based mobile networks. Prerequisites A good understanding of 3GPP’s GSM network, its architecture and operation would be beneficial together with an appreciation of packet-switching IP-based networks would be advantageous. Topic Areas Include GPRS network architecture The GPRS air interface and Dual Transfer Mode GPRS protocols Identities and addressing Mobility management and Dual Access Location management and Pooling Security and confidentiality Roaming Policy and Charging Content Access Controls The GERAN and Enhanced EDGE Packet-switched procedures 2.5G and 3G packet-switched interworking GPRS and IMS control GPRS and LTE interworking
POA: Private Course
-
OSPF and BGP Routing Protocols
Course Code: IP1310 Course Summary This practically based course is designed to give engineers a working understanding of OSPF and BGP by configuration of routers and switches and investigation of databases and routing tables. Who would benefit Engineers who are moving into IP and need to have an operational understanding of typical devices such as Ethernet Switches and IP routers. Prerequisites A basic understanding of Ethernet switching and basics of routing such as OSPF together with a good understanding of IP addressing which can be obtained by attending our Wray Castle courses: ‘Internetworking, Ethernet LANs and VLANs Principles – IP1304’ and ‘IP Addressing and Internet Protocols Principles – IP1305’ and ‘Routing Protocol Principles – IP1306’. Topic Areas Include The Purpose of Routing The Routing Table Equal Cost Multi Path Redistribution OSPF Areas OSPF Metrics OSPF Database Troubleshooting OSPF OSPF Exercises Border Gateway Protocol Version 4 (BGP4) BGP redistribution BGP Path Attributes BGP Filtering BGP Troubleshooting BGP Exercise
POA: Private Course
-
Optimising Operations and Transformation
Organisations tend to have a great deal of momentum – the bigger the organisation, the more difficult it can be to change, pivot and reposition. Even smaller business units can be very difficult to transform. Most successful businesses are in a constant state of flux, and they embrace change in order to optimise and pivot accordingly. Whether it is slow evolution, or larger initiatives that require fundamental reorganisation and refocusing of resources and people, the best businesses are able to drive those changes, embrace the new opportunities and maintain their agility and flexibility. This programme explores change within businesses / organisations – whether it is a case of optimising operations, or full-on transformation, we hit the key barriers and enablers for change, before exploring the change process and the role of the leader and key stakeholders. People issues are given a particular focus – in terms of individual and team factors, and the critical role that culture plays in the change process (and in the ongoing organisation). Exercises, case-studies, discussions and break-outs are used to reinforce learning, and to build confidence that participants need to effect positive change in the workplace – whatever size of organisation they work in. Prerequisites None Topic Covered Include Key Principles – Optimising Operations and Transformation The Issue of Company Momentum Momentum – the Impact of Corporate Culture and DNA Momentum – Impact of Corporate Attitude to Risk Momentum and Risk – the Results Resistance to Change – Illustrated Understanding the Nature of Change Change – a Non-Stop Journey Evolving to Stay Relevant and Optimised
POA: Private Course
-
Optimising Operations & Transformation (On-Demand)
Organisations tend to have a great deal of momentum – the bigger the organisation, the more difficult it can be to change, pivot and reposition. Even smaller business units can be very difficult to transform. Most successful businesses are in a constant state of flux, and they embrace change in order to optimise and pivot accordingly. Whether it is slow evolution, or larger initiatives that require fundamental reorganisation and refocusing of resources and people, the best businesses are able to drive those changes, embrace the new opportunities and maintain their agility and flexibility. This programme explores change within businesses / organisations – whether it is a case of optimising operations, or full-on transformation, we hit the key barriers and enablers for change, before exploring the change process and the role of the leader and key stakeholders. People issues are given a particular focus – in terms of individual and team factors, and the critical role that culture plays in the change process (and in the ongoing organisation). Exercises, case-studies, discussions and break-outs are used to reinforce learning, and to build confidence that participants need to effect positive change in the workplace – whatever size of organisation they work in. Topic Covered Include Key Principles – Optimising Operations and Transformation The Issue of Company Momentum Momentum – the Impact of Corporate Culture and DNA Momentum – Impact of Corporate Attitude to Risk Momentum and Risk – the Results Resistance to Change – Illustrated Understanding the Nature of Change Change – a Non-Stop Journey Evolving to Stay Relevant and Optimised
£95.00
-
Open-Source in Mobile Networks
This technical course examines the influence of the open-source community on solutions for building and operating a mobile network, as well as open-source projects, open standards, and commercial open-source solutions used in live networks. Who Would Benefit? Network Engineers, System Architects, Operation and Maintenance Teams, Network Planners, Technical Managers, Prerequisites Prior knowledge of mobile networks, open-source principles, and programming is recommended. Familiarity with network architecture, protocols, and operating systems is beneficial. The course is suitable for participants with varying technical backgrounds and those interested in mobile networks and open-source solutions. Course Contents Introduction to Open-Source Software and Mobile Networks Open-Source Software in Radio Access Network (RAN) Open Source: Core Network Solutions Network Function Virtualization (NFV) and Open Source
POA: Private Course
-
Open Radio Access Networks (Open RAN)
Course Code: RP2401 Open RAN set to transform the Radio Access Networks (RAN) and in turn the Industry that supports it. The ORAN Alliance is working towards an architecture which is open, intelligent, virtualized and fully interoperable with the intention of enabling a more competitive and innovative RAN supplier ecosystem. For the telecommunications operator, Open RAN-compliant mobile networks improve the efficiency and flexibility of RAN deployments and operations – both essential as networks are densified, and as they evolve through the deployment phases of 5G. This course provides a solid introduction to Open RAN, exploring the purpose, features, architecture, operation and deployment options. The way Open RAN principles, and its foundation in virtualisation, supports the evolution to 5G is also discussed, as well as the impact of using ORAN architecture on both the open and standardised interfaces. Who would benefit Those in or entering technical roles in a mobile network operators Radio Access Network (RAN) environment. Prerequisites A basic understanding of cellular radio networks from a radio network perspective as well as the ability to comprehend technical subjects, would be useful. Topic Areas Include Radio Access Networks ORAN Players 3GPP RAN Architecture for 5G Open RAN, O-RAN Operations and Maintenance Whitebox Basestations Trainer: Les Granfield Les is a technical trainer with 35 years of experience. His expertise extends across a wide range of telecommunications technologies. He specializes in GSM, GSM-R, ERTMS/ETCS, UMTS and LTE radio access networks, radio planning, radio access network optimization and Push to Talk over Cellular (PoC).
POA: Private Course
-
NGN Voice Protocols
Course Code: TY1202 Course Summary This course is intended for experienced telecoms engineers that wish to understand the workings of the protocols that are commonly used within Next Generation Networks (NGNs). The course takes a detailed look at real time signalling and transport protocols; it also looks at the protocols used to support legacy devices in the access and core network signalling such as POTS, ISDN and SS7. The course also looks in detail at the protocols supporting the new gateway devices. The course is backed up by an extensive set of exercises and the use of Wireshark. Who would benefit Those requiring a comprehensive understanding of the protocols used in an NGN for the support of voice services. Prerequisites A good understanding of legacy telecommunications networks, plus an understanding of IP networks and signal flows used in support of voice-related services. Topic Areas Include IP convergence Telecoms convergence and NGNs Telecoms (IP) scenarios Real time protocols SIP, RTP and RTCP H.323 call scenario The 3GPP IP Multimedia Subsystem The IMS registration process The IMS call signalling Softswitching architecture and protocols SIGTRAN in the access in support of POTS and ISDN SIGTRAN in the core in support of SS7 H.248 Megaco SIP-I Includes practical signalling exercises.
POA: Private Course
-
NFV Overview
This course is for network engineers and managers who require an overview of Network Functions Virtualisation (NFV) The course reviews the current state of NFV, introduces the leading bodies defining the standards and discusses the drivers behind the technology, and how they relate to each other and to Cloud Computing. It then presents the high-level architecture of NFV and introduces their applicability to real network solutions, especially in light of mobile operators’ intent to virtualise their networks. Who Would Benefit This course is suitable for those who need an high-level understanding of NFV; including network, software and IT engineers, as well as managers and consultants. Prerequisites Delegates should have experience or an understanding of the principles or IP networking and routing and preferably some understanding of modern telecommunications networks. Course Contents Drivers for Change NFV Functional Architecture NFV Infrastructure (NFVI) NFV Management and Orchestration (MANO)
POA: Private Course
-
Next Generation Transmission
Course Code: TY2702 Course Summary This 3-day course reviews traditional approaches to transport services such as SDH and WDM and also discusses in detail alternative approaches including Carrier Ethernet and Pseudo Wire services that may be deployed in backhaul and core network applications. Who would benefit Transmission and network engineers who require an insight into modern digital transmission techniques used within fixed and mobile telecommunications networks. Prerequisites A good knowledge of fixed or mobile network transmission and switching architecture, services and applications and some knowledge of packet-switched networks and IP routing protocols. Topic Areas Include Introduction to transport networks Layer 2 virtual circuits – MPLS MPLS based VPNs MEF terminology for Carrier Ethernet Services Provider Bridge networks and Ethernet label-switching PBB service multiplexing Ethernet OAM – Connection Fault and Performance Management SDH Transport Networks SDH Multiplexing Structure and Protection Mechanisms Next Generation SDH review Wave Division Multiplexing (WDM) The Optical Transport Network, principles, multiplexing structures and operation MPLS in optical Networks, GMPLS and ASON Pseudo Wire (PW) principles, encapsulation and the control word Pseudo Wire types, IETF MPLS and TDM based PWs MPLS VLAN-to-VLAN and VPLS service examples
POA: Private Course
-
Network Functions Virtualisation (NFV) (On-Demand)
This course is for network engineers who require a practical understanding of Network Functions Virtualisation (NFV). The course reviews the current NFV situation, introduces the leading bodies defining the standards and discusses the likely fields of application by examining use cases and existing Proof of Concepts (POCs). It discusses NFV from ETSI’s perspective, particularly in light of mobile operators’ intent to virtualise their IMS networks, as well as looking at how NFV relates to other techniques such as Cloud Computing and Software Defined Networking (SDN). Who would benefit This course is suitable for those who need an understanding of NFV and the deployment considerations associated with NFV; including network, software and IT engineers, as well as managers and consultants. Prerequisites Delegates should have experience or an understanding of the principles or IP networking and routing and preferably some understanding of modern telecommunication’s networks. Topic Areas Include Drivers for Change NFV Functional Architecture NFV Infrastructure (NFVI) NFV Management and Orchestration (MANO) Software Defined Networks (SDN) and NFV NFV ETSI Proof of Concept Project
£950.00
-
Network Functions Virtualisation (NFV)
Course Code: IP2201 Course Summary This course is for network engineers who require a practical understanding of Network Functions Virtualisation (NFV). The course reviews the current NFV situation, introduces the leading bodies defining the standards and discusses the likely fields of application by examining use cases and existing Proof of Concepts (POCs). It discusses NFV from ETSI’s perspective, particularly in light of mobile operators’ intent to virtualise their IMS networks, as well as looking at how NFV relates to other techniques such as Cloud Computing and Software Defined Networking (SDN). Learning is reinforced with Open Source NFV IMS example. Who would benefit This course is suitable for those who need an understanding of NFV and the deployment considerations associated with NFV; including network, software and IT engineers, as well as managers and consultants. Prerequisites Delegates should have experience or an understanding of the principles or IP networking and routing and preferably some understanding of modern telecommunication’s networks. Topic Areas Include Drivers for Change NFV Functional Architecture NFV Infrastructure (NFVI) NFV Management and Orchestration (MANO) Software Defined Networks (SDN) and NFV NFV ETSI Proof of Concept Projects
POA: Private Course
-
Multi Protocol Label Switching
Course Code: IP1307 Course Summary An introduction to the topic of Multi Protocol Label Switching (MPLS) looking first at plain vanilla MPLS Label Switched Paths (LSPs) and then progressing through the concepts of MPLS Virtual Private Network (VPN) connections. Who would benefit Engineers are finding MPLS is a variety of different applications from IP VPNs, through to GMPLS in transmission networks. As so this 1-day course will provide an excellent introduction to the topic. Prerequisites A good understanding of IP networking is essential as well as an understanding of OSPF and BGP which can be obtained from attending our ‘Routing Protocol Principles – IP1306’ course. Topic Areas Include Motivation for MPLS MPLS applications view MPLS packet forwarding Architecture of MPLS-based IP-VPNs Forward Equivalence Class (FEC) MPLS label operations Special case labels Label Distribution Protocol (LDP) Virtual Private Networks (VPN) MP-BGP configuration
POA: Private Course
-
MPLS VPNs and Traffic Engineering
Course Code: IP1312 Course Summary A practical look at Multi Protocol Label Switching (MPLS) from the simple Label Switched Path through to Virtual Private Network (VPN) connections and finally looking at MPLS Traffic Engineering. Who would benefit Engineers who would benefit from a practical understanding of how MPLS is configured in networks. Especially those that have to work with MPLS VPNs or Traffic Engineering services. Prerequisites A good grounding in MPLS and VPN principles as obtained by attending our Wray Castle course ‘Multi Protocol Label Switching – IP1307’. Topic Areas Include VPN (Virtual Private Networks) MPLS-based IP-VPN motivation MPLS VPN operation Configuration of VPN sites MP-BGP configuration MP-BGP updates Building different VPN types using route targets Route reflector MPLS traffic engineering MPLS-TE trunk attributes MPLS-TE basic operations Fast restoration of an LSP using RSVP-TE
POA: Private Course
-
Mobile Intelligent Networks (CAMEL)
Course Code: MB90 Course Summary An introduction to Intelligent Network (IN) concepts specifically those associated with IN Capability Set 1 (IN-CS1). The course covers the interworking between CAMEL and mobile networks, including the circuit-switched packet-switched domains and the SMS service. Who would benefit Those needing to know how value-added services can be implemented within mobile networks using CAMEL technology. Prerequisites An ability to understand technical language and concepts, and a good knowledge of GSM operation. Knowledge of SS7 is also beneficial. Topic Areas Include Intelligent Network Concepts Intelligent Network – Capability Set 1 Basic Call State Models (BCSM) Detection Points (DP) types and arming CAMEL Phases 1, 2 and 3 features, operation and procedures BCSMs, DPs and CAMEL Subscription Information CAMEL Information Flows CAMEL Interaction with CS and PS mobile networks CAMEL Interaction with CS and PS mobile networks Charging functions Pre-paid solutions and real-time charging Analysis of CAMEL signalling
POA: Private Course